If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-20p-8=0
a = 3; b = -20; c = -8;
Δ = b2-4ac
Δ = -202-4·3·(-8)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{31}}{2*3}=\frac{20-4\sqrt{31}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{31}}{2*3}=\frac{20+4\sqrt{31}}{6} $
| c+9c+1=11 | | h=5+50(3)-16(9) | | 18j-15j-3j+3j+j=20 | | 34y^2=68y | | 15a-9a+2a-2a+a=14 | | -12x=120 | | 3(3x-9)+2(2x+8)=x | | -0.2y=5.6 | | (3z+1)(3-z)=0 | | x+19=25 | | (6x-9)+(3x)+x=180 | | (6x-9)+(3x)+x=1801 | | x5x+16.5=13.5+10x | | 3(3x-5)+2(5x+6)=0 | | 5x²+12x+4=0 | | 13x+7=-14x+-128 | | 4x+18+7x4=42 | | x-7.9=8.23 | | -(2x-3)=+7-4x | | 11x+4=12x-4 | | -6x=-4x+14 | | 6x-2(-4x-10)=-92 | | 11x+2=12x-17 | | 6(7x+10)=6(-10x+-8 | | x+21=132.5 | | X+52+x+72+80=180 | | 12x+2x=57-1 | | 1.5x=2.55 | | 3x-3+4x+16+90=180 | | 28*y=7 | | 1.5m=2.55 | | 2/8x-7/8x=20-35 |